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I. INTRODUCTION 

Cloud computing is the practice of using a network of remote servers hosted on the Internet to store, manage, and 
process data, rather than a local server or a personal computer. Cloud computing [1] is a general term for the 
delivery of hosted services over the Internet. It enables companies to consume compute resources as a utility -- just 
like electricity - rather than having to build and maintain computing infrastructures in-house. Cloud computing 
promises several attractive benefits for businesses and end users. Three of the main benefits of cloud computing 
includes:  Self-service provisioning: End users can spin up computing resources for almost any type of workload on-
demand related to applications of IT and Non IT products or services and so on. 
Elasticity: Companies can scale up as computing needs increase and then scale down again as demands decrease. 
Pay per use: Computing resources are measured at a granular level, allowing users to pay only for the resources and 
workloads they use. Cloud computing services can be private, public or hybrid [2]. Private cloud services are 
delivered from a business' data center to internal users. This model offers versatility and convenience, while 
preserving management, control and security as shown in figure (1). Internal customers may or may not be billed for 
services through IT chargeback. In the public cloud model, a third-party provider delivers the cloud service over the 
Internet. Public cloud services are sold on-demand, typically by the minute or the hour. Customers only pay for the 
CPU cycles, storage or bandwidth they consume.  Leading public cloud providers include Amazon Web Services 
(AWS), Microsoft Azure, IBM/Soft Layer and Google Compute Engine. Hybrid cloud is a combination of public 
cloud services and on-premises private cloud – with orchestration and automation between the two. Companies can 
run mission-critical workloads or sensitive applications on the private cloud while using the public cloud for burst 
workloads that must scale on-demand. The goal of hybrid cloud is to create a unified, automated, scalable 
environment which takes advantage of all that a public cloud infrastructure can provide, while still maintaining 
control over mission-critical data. 
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Abstract-   Homomorphic Encryption (HE) is a process of computing on encrypted data without decryption of 
cipher text. It is a method where we can perform specific types of calculations on cipher text, which is same result as 
applied on plaintext. Due to rapid development of cloud services, the customers are rely on cloud service providers 
(CSPs) for storing and retrieving the data from cloud servers.  Frequent decrypt the cipher text and giving secret 
key to CSPs are probably exploiting the user data. In 2009 Craig Gentry proposes a method called Homomorphic 
encryption which provide the do the computations on encrypted data without decrypt the cipher text and enhance 
the security levels through the bootstrapping and using ideal lattices. In this paper we analyze noise levels of 
Partially HE & Fully HE and distinguished the noise levels in each method and propose a new method for decrease 
the noise levels at both SHE &FHE with various applications. 
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Although cloud computing has changed over time, it has always been divided into three broad service categories: 
infrastructure as a service (IaaS), platform as a service (PaaS) and software as service (SaaS)[3]. IaaS providers such 
as AWS supply a virtual server instance and storage, as well as application program interfaces (APIs) that let users 
migrate workloads to a virtual machine (VM). Users have an allocated storage capacity and start, stop, access and 
configure the VM and storage as desired. IaaS providers offer small, medium, large, extra-large, and memory- or 
compute-optimized instances, in addition to customized instances, for various workload needs. 

In the PaaS model, providers host development tools on their infrastructures. Users access those tools over the 
Internet using APIs, Web portals or gateway software. PaaS is used for general software development and many 
PaaS providers will host the software after it's developed. Common PaaS providers include Salesforce.com's 
Force.com, Amazon Elastic Beanstalk and Google App Engine. SaaS is a distribution model that delivers software 
applications over the Internet; these are often called Web services. Microsoft Office 365 is a SaaS offering for 
productivity software and email services. Users can access SaaS applications and services from any location using a 
computer or mobile device that has Internet access. Cloud computing is a model for enabling ubiquitous, convenient, 
on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, 
applications, and services) that can be rapidly provisioned and released with minimal management effort or service 
provider interaction. This cloud model is composed of five essential characteristics, three service models, and four 
deployment models. 

 

Figure 1: Cloud computing architecture 

1.1. Essential Characteristics: 
 

On-demand self-service: A consumer can unilaterally provision computing capabilities, such as server time and 
network storage, as needed automatically without requiring human interaction with each service provider. Broad 
network access: Capabilities are available over the network and accessed through standard mechanisms that promote 
use by heterogeneous thin or thick client platforms (e.g., mobile phones, tablets, laptops, and workstations). 
Resource pooling: The provider’s computing resources are pooled to serve multiple consumers using a multi-tenant 
model, with different physical and virtual resources dynamically assigned and reassigned according to consumer 
demand. There is a sense of location independence in that the customer generally has no control or knowledge over 
the exact location of the provided resources but may be able to specify location at a higher level of abstraction (e.g., 
country, state, or datacenter). Examples of resources include storage, processing, memory, and network bandwidth. 
Rapid elasticity: Capabilities can be elastically provisioned and released, in some cases automatically, to scale 
rapidly outward and inward commensurate with demand. To the consumer, the capabilities available for 
provisioning often appear to be unlimited and can be appropriated in any quantity at any time.  
 
1.2 Service Models: 
Software as a Service (SaaS). The capability provided to the consumer is to use the provider’s applications running 
on a cloud infrastructure. The applications are accessible from various client devices through either a thin client 
interface, such as a web browser (e.g., web-based email), or a program interface. The consumer does not manage or 
control the underlying cloud infrastructure including network, servers, operating systems, storage, or even individual 
application capabilities, with the possible exception of limited user-specific application configuration settings.  
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Platform as a Service (PaaS). The capability provided to the consumer is to deploy onto the cloud infrastructure 
consumer-created or acquired applications created using programming Languages, libraries, services, and tools 
supported by the provider.3 The consumer does not manage or control the underlying cloud infrastructure including 
network, servers, operating systems, or storage, but has control over the deployed applications and possibly 
configuration settings for the application-hosting environment. 
 
Infrastructure as a Service (IaaS). The capability provided to the consumer is to provision processing, storage, 
networks, and other fundamental computing resources where the consumer is able to deploy and run arbitrary 
software, which can include operating systems and applications. The consumer does not manage or control the 
underlying cloud infrastructure but has control over operating systems, storage, and deployed applications; and 
possibly limited control of select networking components (e.g., host firewalls). 
 
1.3 Deployment Models: 
Private cloud: The cloud infrastructure is provisioned for exclusive use by a single organization comprising multiple 
consumers (e.g., business units). It may be owned, managed, and operated by the organization, a third party, or some 
combination of them, and it may exist on or off premises. 
 
Community cloud: The cloud infrastructure is provisioned for exclusive use by a specific community of consumers 
from organizations that have shared concerns (e.g., mission, security requirements, policy, and compliance 
considerations). It may be owned, managed, and operated by one or more of the organizations in the community, a 
third party, or some combination of them, and it may exist on or off premises. 
 
Public cloud: The cloud infrastructure is provisioned for open use by the general public. It may be owned, managed, 
and operated by a business, academic, or government organization, or some combination of them. It exists on the 
premises of the cloud provider. 
 

Hybrid cloud: The cloud infrastructure is a composition of two or more distinct cloud infrastructures (private, 
community, or public) that remain unique entities, but are bound together by standardized or proprietary technology 
that enables data and application portability (e.g., cloud bursting for load balancing between clouds). 
 
1.4 Virtualization: 
  
The cloud computing providers (CSP) come from huge digital stations called Data centers, using techniques based 
on Virtualization [4]. The virtualization is all the technical material software that can run on a single machine with 
multiple operating systems and/or multiple applications, separately from each other, as if they were working on 
separate physical machines. It can simplify the management of the server’s side, by optimizing the use of resources 
and enabling high availability. The growth of the activity has irreparably the need to evolve the IT infrastructure. 
Adding a new servers for new applications at risk of under –use others. Administration costs are increasing and the 
structure loses flexibility and reliability. Among the reasons for adopting virtualization are server consolidation and 
infrastructure optimization.  Briefly it can reduce the number of servers and the amount of hardware needed in data 
center. The types of virtualization techniques are Virtual Machine, Isolator, Full Hypervisor and Para virtualization.  
 
 

II. RELATED WORK 
In 1978, shortly after the invention of the RSA cryptosystem, Rivert, Adleman, and Dertouzos [RAD][5]came up 
with the idea of fully homomorphic encryption, which they called “Privacy Homomorphism”. Their paper states, 
“although there are some truly inherent limitations on what can be accomplished, we shall see that it appears likely 
that there exist encryption functions which permit encrypted data to be operated on without preliminary decryption 
of the operands, for many sets of interesting operations. These special encryption functions we call ‘privacy 
homomorphism’; they form an interesting subset of arbitrary encryption schemes” .Despite the optimism of Rivert, 
Adleman, and Dertouzos [5], fully homomorphic encryption remained out of reach for many years.  
 
Homomorphic encryption scheme that allow simple/complex computations (add, multiply, XOR) on encrypted data. 
For example, the encryption systems of Goldwasser and Micali[6],El Gamal[7], Cohen and Fischer, and Pailler[8] 
support either adding or multiplying encrypted ciphertexts, but not operations simultaneously. Boneh, Goh and 
Nissim [9] were the first to construct a scheme capable of performing both operations at the same time. –their 
scheme handles an arbitrary number of additions but just one multiplication. More recently, in a breakthrough work, 
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Gentry [10] constructed a fully Homomorphic Encryption scheme (FHE) capable of evaluating an arbitrary number 
of additions and multiplications (and thus, compute and function) on encrypted data by using Ideal Lattices [11] and 
Bootstrapping [12]. Aside from Gentry’s scheme Smart and Vercauteren [13] and an optimization by Stehle and 
Seinfeld, there are two other fully homomorphic encryption schemes.  

III. HOMOMORPHIC ENCRYPTION 
 
The word homomorphic has roots in Greek and loosely translates as “same shape” or “same form”. In relation to 
cryptography, the concept is that operations can be performed on encrypted data without sharing the secret key 
needed to decrypt the data [14]. Homomorphic encryption has great utility in cloud computing, particularly for those 
that wish to house encrypted data on cloud provider’s servers. Homomorphic Encryption: Homomorphic encryption 
is a form of encryption which allows specific or related types of computations/calculations to be performed on 
ciphertexts and generate an encrypted results which, when decrypted, matches the result of operations performed on 
the plaintext. This is most desirable and security feature of modern cloud computing domain.  
 

The following figure(2) shown below is how Homomorophic Encryption is applied to the cloud computing, if x is an 
plaintext, by using public key(pk) performs encryption i.e.Encpk(x) and generates a ciphertext(c ).By using 
function(f),we can apply any arbitrary computations on C. Here y=Eval(f,Enc(x)) generates a result based on 
function(f) which yields the same operation performed on plain text. i.e. Enc(x) = Enc(0) where 0 is plaintext. 
 

 

 
 

Figure 2: Homomorphic Encryption 
 

IV. IMPLEMENTATION 
 
Partially Homomorphic Encryption: A cryptosystem is considered partially homomorphic if it exhibits either 
additive or multiplicative homomorphism, but not both. Some examples of partially homomorphic cryptosystems 
are:RSA - multiplicative homomorphism,ElGamal -multiplicative homomorphism, Paillier -additive homomorphism 
 

i. RSA - multiplicative homomorphism 
 
RSA exhibits multiplicative homomorphism. By multiplying two (or more) RSA ciphertexts together, the decrypted 
result is equivalent to the multiplication of the two (or more) plaintext values. 
Example 1. Consider an RSA key pair (d, e) and modulus n. Recall that the encryption procedure for a message m is 
c=me mod n and the decryption procedure is m=cd mod n Given two plaintext messages, x1 and x2, the 
corresponding ciphertext is x1

e and x2
e respectively. Multiplying the ciphertext together yields (x1x2) e. When 

decrypted, ((x1x2)e)d =x1x2 mod n. 
 
ii. ElGamal –multiplicative homomorphism 
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ElGamal exhibits multiplicative homomorphism. By multiplying each component of multiple ciphertexts with their 
corresponding respective components, the decrypted result is equivalent to the multiplication of the plaintext values.  
Consider an ElGamal public key (α,β,p) with private key a. Recall encryption of a plaintext message x with nonce k 
to be €(x,k) = (y1,y2) where y1=αk mod p y2= xβk mod p. Given two plaintext messages x1 and x2 with  nonces k1 and 
k2, the corresponding ciphertexts are: €(x1, k1) = (y1,y2) = (αk1 mod p, xβk1 mod p) €(x2, k2) = (y3,y4) = (αk2 mod p, 
xβk2 mod p) Multiplying the two ciphertexts together yields: (y1, y2). (y3, y4) = (y1.y3, y2. y4)   = (αk1αk2 , x1βk1 .x2βk2) 
  = (αk1+k2,x1x2 βk1+k2) Decrypting the resulting ciphertext yields: d(αk1+k2 ; x1x2βk1+k2) = x1x2 
 

iii.  Paillier -additive homomorphism 
 
Paillier exhibits additive homomorphism. By multiplying each component of multiple ciphertexts with their 
corresponding respective components, the decrypted result is equivalent to the addition of the plaintext values. The 
Paillier cryptosystem consists of the following values: Two large primes p and q and n = pq. We define λ(n) = lcm(p 
- 1, q - 1). We choose some value g where g €Z*

n2
 and L(gλmod n2)-1mod n (known as µ) exists. The public key is 

(n,g) and the private key is (λ,µ).  L(u) = (u-1)/n, Consider two plaintext message x1and x2 with corresponding 
ciphertexts: €(x1,r1) = gx

1rn
1 mod n2,,€(x2,r2) = gx

2rn 
2 mod n2.Multiplying the two ciphertexts together yields: €(x1,r1) 

.€ (x2,r2) = gx
1rn

1 . gx
2rn

2 mod n2  = gx
1

+x
2(r1r2)n mod n2.Decrypting the resulting ciphertext yields: d(€(gx

1
+x

2(r1r2)n) 
= x1 + x2 mod n 
 
V.FULLY HOMOMORPHIC ENCRYPTION 
 
Principally, FHE allows for arbitrary computations on encrypted data. Computing on encrypted data means that if a 
user has a function f and want to obtain f(m1, . . . , mn) for some inputs m1, . . . , mn, it is possible to instead 
compute on encryptions of these inputs, c1, . . . , cn, obtaining a result which decrypts to f(m1, . . . , mn). In some 
cryptosystems the input messages (plaintexts) lie within some algebraic structure, often a group or a ring. In such 
cases the ciphertexts will often also lie within some related structure, which could be the same as that of the 
plaintexts. The function f in older homomorphic encryption schemes is typically restricted to be an algebraic 
operation associated with the structure of the plaintexts. For instance, consider ElGamal. If the plaintext space is a 
group G, then the ciphertext space is the product G×G, and f is restricted to the group operation on G. Indeed most 
schemes prior to 2009 fit such a structure. We can express the aim of fully homomorphic encryption to be to extend 
the function f to be any function. This aim can be achieved if the scheme is homomorphic[15] with respect to a 
functionally complete set of operations and it is possible to iterate operations from that set. 
 
i. Lattices and bases 
 
In this section we introduce some basic notions regarding lattice-based cryptography. For each notion, we will first 
formalize it, then provide an example to illustrate it. Individually, each section should not be hard to understand, the 
difficulty comes from the fact that there is a lot of them. However, we believe that if the reader calmly go through 
them, it should be accessible. In mathematics, a set of n independent vectors can be viewed as a basis of a vector 
space. For example, an identity matrix is a basis for the Euclidean space, where each column of the matrix is an 
independent vector (this is basically the space you use in any geometry class). Any point of this space is the result of 
a linear combination of those vectors. For example, stating that a point is at coordinates (1,3,2)(1,3,2) means that 
this point can be reach by adding the first basis vector once, the second thrice and the last twice. 
 
ii. On the Learning With Error problem (LWE): 
 
Given a basis, consider linear combinations of its vectors and add a small error. The problem of distinguishing the 
resulting linear combination with error from a completely random vector is called the Learning with Error problem. 
Stated differently, can we find the lattice vector closest to the vector with noise? Can we solve CVP for all basis 
and/or linear combinations? And the answer is: it depends. In order to be consistent with the rest of this paper, we 
will consider the case where our vector's coefficients are taken modulo some integer qq. You can see our space as a 
box, whenever a vector goes out of the box; it comes back from the other side (like in the game snake). Let us now 
take a look at a few examples (those examples are only here to get a better grip of the problem, they are in fact easy 
to solve with the right algorithms): 
 
iii. On the Hardness of LWE: 
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As stated in the introductory section on LWE, the hardness of solving LWE is tied to the one of finding a better 
basis for a given lattice. The most widely used algorithm for basis reduction is LLL (we will not detail the 
algorithm, nor the other existing methods). This algorithm produces a reduced basis in a polynomial time, but at the 
cost of an approximation exponential in the number of dimensions. If the approximation is too important relatively 
to our space (modulo qq), solving CVP produces an error (i.e. fail).  
 

iv. On rings and notation: 
 

The scalar product of a matrix AA and a vector ss produces a vector consisting of the scalar product of each of the 
matrix row vector with ss. Moreover, the product of an integer pp with a vector ee result in a vector in which each 
coefficient is equal to the coefficient of ee multiplied by pp. However, when writting e+m1e+m1 where ee is an n-
dimensional vector and m1m1 an integer, consider vector addition of ee and the n-dimensional 
vector [m1,0,...,0][m1,0,...,0]. Now that we have a hard problem at hand, we can start talking about cryptography: 
we will start by explaining the basis behind LWE-based SHE scheme. Then we will see how Gentry proposed to 
make it fully homomorphic. Finally we will talk a bit about Ring Learning With Error problem (RLWE). 
 
VI. RESULTS & DISCUSSION 
 

 

The following table shows the various schemes support to the Homomorphic Encryption property and there 
implemented year.  
 

Scheme Homomorphic 
Properties  

Algorithm Year 

RSA Multiplicative Asymmetric  1977 
Elgaml Multiplicative Asymmetric  1985 
Bonaloh-
Goh-
Nissim 

Multiplicative Asymmetric  1994 

Goldwass
er Micali 

XOR/ 
Additive 

Asymmetric 1982 

Pailler Additive Asymmetric 1999 
Okamoto 
Uchiyama 

Additive Asymmetric  1998 

Gentry Fully Asymmetric 2009 
Table1: Homomorphic Encryption schemes 
 
The noise levels of   Somewhat Homomorphic Encryption (SHE) schemes using H.E.property. 
 

 
Figure 3: Noise levels in Partially HE. 

 

The noise levels of   Fully Homomorphic Encryption (FHE) schemes using Homompric Encryption property. 
 



V.Biksham and D.Vasumathi                                                                   118 

 
Figure4: Noise levels in Fully HE 

 
The noise levels in fully homomorphic encryption is inversely directly proportional to the number of computations 
performed on ciphertext. 

 

VII.CONCLUSION 
To conclude with this post, FHE is a promising field in cryptography, with very interesting properties. However it is 
still quite limited regarding its computation capabilities. Moreover, transforming a complex application so that it 
supports encrypted data requires, if not a good understanding of homomorphic cryptography, a dialogue between 
developers and cryptographers. 
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